## GEMEINDE STOTZING

## Kläranlage - Erweiterung auf 1.800 EW

Die Kläranlage Stotzing wurde in den Jahren 2019-2021 an den Stand der Technik angepasst und auf eine Reinigungskapazität von 1.800 Einwohnerwerte ausgebaut.



#### 1. Kläranlagezulauf mit Abzweigschacht

Bei Trockenwetter fließt das gesamte Abwasser über die Kläranlage; Bei Regenwetter wird der Zulauf aufgeteilt auf Kläranlage und Regenüberlaufbecken RÜB2.

#### 2. Umbau und Erweiterung Betriebsgebäude

Schaltwarte und Labor zur Betriebsüberwachung sowie Sozialräume für das Klärfachpersonal.

## 3. Adaptierung mechanische Vorreinigung, Feinrechen und Rundsandfang

Der Feinrechen entfernt Grobstoffe mit Abwurf in Rechengutcontainer; im Sandfang werden Sand und Splitt entfernt; alles wird ordnungsgemäß entsorgt.

# 4. Neuerrichtung 2-straßiges Belebungsbecken BB1+2 mit Rücklaufschlamm-Pumpwerk

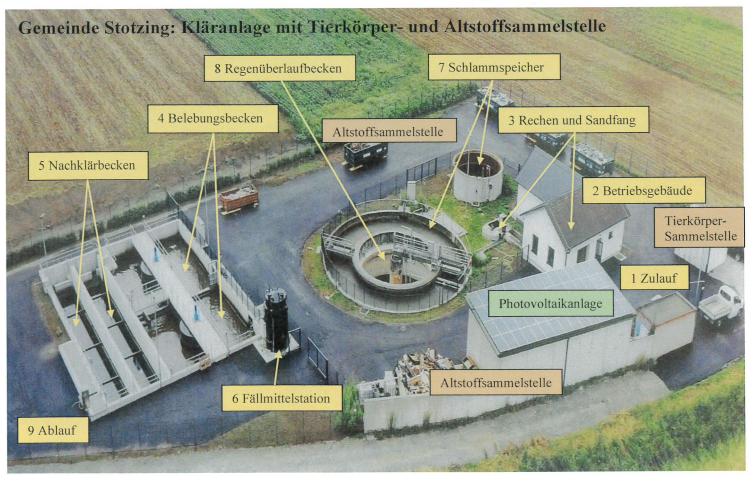
In der biologischen Stufe wird Belebtschlamm (Kleinlebewesen, Bakterien, etc.) mit mechanisch vorgereinigtem Abwasser mittels Kreiselbelüfter durchmischt und mit Sauerstoff versorgt; die Mikroorganismen entfernen (fressen) die organischen Feststoffe und die gelösten organischen Abwasserinhaltsstoffe, wodurch sich der Belebtschlamm laufend vermehrt.

## 5. Neuerrichtung 2-straßiges Nachklärbecken NKB1+2

Im NKB wird das Abwasser-Belebtschlamm-Gemisch beruhigt, Belebtschlamm setzt sich ab und wird als Rücklaufschlamm ins Belebungsbecken rückgeführt; das gereinigte Abwasser wird in den Bach abgeleitet.

#### 6. Neuerrichtung Fällmittelstation

Zugabe von Chemikalien zur Verbesserung der Schlammabsetzung und der Phosphatabscheidung.


### 7. Umbau altes Belebungsbecken zu neuem Schlammspeicherbecken SSB2 und Adaptierung bestehender Schlammspeicher zu Schlammspeicherbecken SSB1

Der Überschussschlamm wird gespeichert, eingedickt und als organischer Stickstoff- und Phosphordünger landwirtschaftlich verwertet.

#### Umbau altes Nachklärbecken zu neuem Regenüberlaufbecken RÜB2

Im Regenüberlaufbecken wird im Regenwetterfall der stark verunreinigte, erste Spülstoß zwischengespeichert und nach dem Regenende automatisch in die Kläranlage rückgeführt und gereinigt.

- 9. Ablauf in den Ortsbach
- 10. Außenanlagen: sichere Abgrenzung Kläranlage zu Tierkörper- und Altstoffsammelstelle



### Bauablauf



09.07.2019: Spundwandarbeiten für Baugrubensicherung



09.10.2019: BB+NKB Betonbau



30.10.2019: Betriebsgebäude Zu- und Umbau



14.04.2020: BB1 Inbetriebnahme nach Reinwassertest



29.07.2019: gesicherte Baugrube mit fertiger Rollierung



15.10.2019: BB+NKB Füllprobe zur Dichtheitsprüfung



09.04.2020: NKB Längsräumer Endmontage



22.04.2020: Demontage NKB alt für Umbau zu RÜB2

## Bauablauf



29.04.2020: BB2 Inbetriebnahme



09.06.2020: RÜB2 Reinwassertest



22.07.2020: Kläranlage Asphaltierung Außenanlagen



28.08.2020: SSB1 Befüllung mit Überschussschlamm



09.06.2020: Leitungsbau



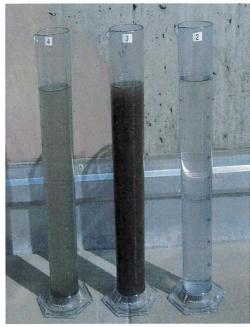
08.07.2020: Fällmitteltank Inbetriebnahme



22.07.2020: RÜB2 Inbetriebnahme mit Befüllung bei Regenwetter



17.06.2021: Zufahrtsstraße Asphaltierung


### Betriebsführung



Tägliche Probennahme und Analyse im Labor



automatische Steuerung und Überwachung im Prozessleitsystem



Rohabwasser Belebtschlamm gereinigtes Abwasser

#### **Technische Daten**

#### Einzugsgebiet

- Gesamteinzugsgebiet
  - o davon Mischsystem
  - o und Trennsystem

#### Mischwasserbehandlung

- Kanalstauraum V<sub>RÜB</sub> 1
- Durchlaufbecken V<sub>RÜB 2</sub>

#### Kläranlage

- Ausbaugröße
- Trockenwettermenge Q<sub>TW</sub>
- Mischwassermenge QMW
- Mischwasser + Bypass Q<sub>MW+BP</sub>
- Bauwerksdaten
  - o Feinrechen + integrierte Presse
  - Rundsandfang
  - Belebungsbecken BB1+BB2
  - Nachklärbecken NKB1+NKB2
  - Schlammspeicher SSB1+SSB2

61,4 ha,

57,0 ha (Schmutz- und Regenwasser in einem Kanal)

4,4 ha (Schmutz- und Regenwasser in getrennten Kanälen)

180 m<sup>3</sup>

180 m<sup>3</sup>

1.800 EW

10,5 l/s bzw. 37,8 m3/h bzw. 360 m3/d

21,0 l/s bzw. 76,0 m3/h

32,0 l/s bzw. 115,0 m<sup>3</sup>/h

Spaltweite 3 mm

 $V_{SF} = 2.7 \text{ m}^3$ 

2 Becken: LxBxH =  $10.5 \times 10.5 \times 3.5 \text{ m}$ ;  $V_{BB} = 2 \times 385 \text{ m}^3 = 770 \text{ m}^3$ 

2 Becken: LxBxH = 21,4 x 3,0 x 3,0 m;  $V_{NKB}$  = 2x192 m<sup>3</sup> = 384 m<sup>3</sup>

 $V_{SSB1} + V_{SSB2} = 93 \text{ m}^3 + 325 \text{ m}^3 = 417 \text{ m}^3$ 

#### Betriebsdaten

Jahreszufluss

Rechengut (gepresst)

Sand

Klärschlamm (ca. 3% TS)

Energieverbrauch (gesamt)

Feststoffe

BSB5 (biochemischer Sauerstoffbedarf)

Stickstoff

Phosphor

ca. 120.000 m<sup>3</sup>/Jahr

ca. 4.000 kg/Jahr

ca. 500 kg/Jahr

ca. 600 m<sup>3</sup>/Jahr

ca. 60.000 kWh/Jahr (davon PV-Eigenerzeugung ca. 16.000 kWh/Jahr)

Zulauf ca. 100 kg/d

Ablauf ca. 1,3 kg/d

Zulauf ca. 120 kg/d

Ablauf ca. 5 kg/d

Zulauf ca. 15 kg/d

Ablauf ca. 3 kg/d

Zulauf ca. 2,5 kg/d

Ablauf ca. 0,4 kg/d

### Beteiligte Firmen







